Definitions Of Terms Commonly Used In Higher Math The Following Is A Guide To The Weary Student Of Mathematics Who Is Often Confronted With Terms Which Are Commonly Used But Rarely Defined.

HomeShort JokesJokes from Emails

Definitions of Terms Commonly Used in Higher Math

The following is a guide to the weary student of mathematics who
is often confronted with terms which are commonly used but rarely
defined. In the search for proper definitions for these terms we
found no authoritative, nor even recognized, source. Thus, we
followed the advice of mathematicians handed down from time
immortal: "Wing It."


CLEARLY: I don't want to write down all the "in-
between" steps.

TRIVIAL: If I have to show you how to do this, you're
in the wrong class.

OBVIOUSLY: I hope you weren't sleeping when we discussed
this earlier, because I refuse to repeat it.

RECALL: I shouldn't have to tell you this, but for
those of you who erase your memory tapes
after every test...

WLOG (Without Loss Of Generality): I'm not about to do all the
possible cases, so I'll do one and let you
figure out the rest.

IT CAN EASILY BE SHOWN: Even you, in your finite wisdom, should
be able to prove this without me holding your
hand.

CHECK or CHECK FOR YOURSELF: This is the boring part of the
proof, so you can do it on your own time.

SKETCH OF A PROOF: I couldn't verify all the details, so I'll
break it down into the parts I couldn't
prove.

HINT: The hardest of several possible ways to do a
proof.

BRUTE FORCE (AND IGNORANCE): Four special cases, three counting
arguments, two long inductions, "and a
partridge in a pair tree."

SOFT PROOF: One third less filling (of the page) than
your regular proof, but it requires two extra
years of course work just to understand the
terms.

ELEGANT PROOF: Requires no previous knowledge of the subject
matter and is less than ten lines long.

SIMILARLY: At least one line of the proof of this case is
the same as before.

CANONICAL FORM: 4 out of 5 mathematicians surveyed
recommended this as the final form for their
students who choose to finish.

TFAE (The Following Are Equivalent): If I say this it means that,
and if I say that it means the other thing,
and if I say the other thing...

BY A PREVIOUS THEOREM: I don't remember how it goes (come to
think of it I'm not really sure we did this
at all), but if I stated it right (or at
all), then the rest of this follows.

TWO LINE PROOF: I'll leave out everything but the conclusion,
you can't question 'em if you can't see 'em.

BRIEFLY: I'm running out of time, so I'll just write
and talk faster.

LET'S TALK THROUGH IT: I don't want to write it on the board lest
I make a mistake.

PROCEED FORMALLY: Manipulate symbols by the rules without any
hint of their true meaning (popular in pure
math courses).

QUANTIFY: I can't find anything wrong with your proof
except that it won't work if x is a moon of
Jupiter (Popular in applied math courses).

PROOF OMITTED: Trust me, It's true.

Related: